
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report libssh C Library 09.2019
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, Prof. N. Kobeissi, MSc. D. Weißer,
BSc. J. Hector, B. Walny

Index
Introduction

Scope

Identified Vulnerabilities

SSH-01-003 Client: Missing NULL check leads to crash in erroneous state (Low)

SSH-01-004 SCP: Unsanitized location leads to command execution (Critical)

SSH-01-006 General: Various unchecked Null-derefs cause DOS (Low)

SSH-01-007 PKI Gcrypt: Potential UAF/double free with RSA pubkeys (Medium)

SSH-01-010 SSH: Deprecated hash function in fingerprinting (Low)

SSH-01-011 SSH: Lack of point validation on X25519 and Ed25519 (Medium)

SSH-01-013 Conf-Parsing: Recursive wildcards in hostnames lead to DOS (Low)

SSH-01-014 Conf-Parsing: Integer underflow leads to OOB array access (Low)

Miscellaneous Issues

SSH-01-001 State Machine: Initial machine states should be set explicitly (Info)

SSH-01-002 Kex: Differently bound macros used to iterate same array (Info)

SSH-01-005 Code-Quality: Integer sign confusion during assignments (Low)

SSH-01-008 SCP: Protocol Injection via unescaped File Names (Low)

SSH-01-009 SSH: RFC4255 not Implemented (Info)

SSH-01-012 PKI: Information leak via uninitialized stack buffer (Low)

Conclusions

Cure53, Berlin · 10/11/19 1/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“libssh is a multiplatform C library implementing the SSHv2 protocol on client and server
side. With libssh, you can remotely execute programs, transfer files, use a secure and
transparent tunnel, manage public keys and much more ...”

From https://www.libssh.org/

This report documents the findings of a security assessment targeting the libssh
software. Carried out by Cure53 in September and October 2019, this project entailed
both a penetration test and a source code audit. The focus was placed on the libssh
software, which is available as open source and currently shipped in version v0.9.
Fourteen security-relevant findings, including one marked as “Critical” in terms of impact,
have been spotted by Cure53 on the scope.

It needs to be clarified that this assessment was generously funded by Mozilla. The
budget stemmed from the framework of the Mozilla Open Source Support (MOSS)
initiative, specifically the Secure Open Source funding track. Cure53 was introduced to
the libssh team and its maintainers by Mozilla. From there, the assessment was planned
collaboratively. Resources-wise, Cure53 approached this assessment of libssh with a
team of six senior testers. The total time invested into the completion of this examination
came up to thirty-two person-days. All work - spanning core tests, documentation,
reporting and write-up - was done in late September and early October 2019.

In order to fulfill the objectives of this assessment in an organized fashion, three work
packages (WPs) have been created. WP1 encompassed the libssh source code audit,
during which Cure53 focused on investigating the available sources with the overarching
goal of identifying vulnerable sections. Code-assisted penetration testing, reliant on the
use of the reference server and client implementations, as well as local setups created
by the Cure53, has been performed during WP2. Finally, WP3 centered on libssh
protocol Fuzzing and formal verification using AFL. The latter partly happened in parallel
to the test and was also accompanied by formal verification with the ProVerif tool. To
clarify the goal, it should be stated that Cure53 sought to find out whether the protocol
handshakes are as secure as they are supposed to be.

To prepare for the test, several briefing meetings were held. In addition, the libssh team
supplied Cure53 with a scope document with instructions pertinent to the test setup,
interesting areas and general info about the expectations regarding the test and
assessment’s results. Consequently, the project started on time and progressed
efficiently. Communications during the assessment took place in an IRC channel on
Freenode, which was made available by the maintainers of the libssh project. Cure53

Cure53, Berlin · 10/11/19 2/18

https://cure53.de/
https://www.libssh.org/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

furnished regular status updates and shared relevant findings as they emerged rather
than upon waiting for the final completion of this report.

Among the spotted fourteen findings, eight were classified as security vulnerabilities and
six were noted as general weaknesses with lower exploitation potential. While one item
received a “Critical” marker, it must be noted that its exploitability does not extend to
every piece of software that utilizes the libssh API. Nevertheless, it was demonstrated
that popular software such as cURL is prone to the proposed attack scenario, thus
causing the vulnerability to be marked as higher than originally proposed. Quite
impressively, all other problems had only “Medium” and lower grades, indicating a good
overall outcome of this Cure53 assessment of the libssh software.

In the following sections, the report will first briefly reiterate the scope and three specific
WPs. It then moves on to dedicated, chronologically discussed tickets, which shed light
on the discoveries one-by-one. Alongside technical aspects like PoCs, Cure53 furnishes
mitigation advice for improving libssh going forward. The report closes with a broader
conclusion in which Cure53 summarizes this autumn 2019 project and issues a verdict
about the tested scope. Further, detailed recommendations and notes on the security
and privacy posture of the libssh software are supplied in the final section of this
document.

Scope
• libssh server- and client-side code

◦ WP1: libssh source code audits
▪ https://www.libssh.org/files/0.9/

◦ WP2: libssh penetration tests, code-assisted (using reference server & client)
◦ WP3: libssh protocol fuzzing & formal verification (using AFL & ProVerif)
◦ A detailed scope document was made available to Cure53 by the libssh maintainers
◦ Build instructions were provided

Cure53, Berlin · 10/11/19 3/18

https://cure53.de/
https://www.libssh.org/files/0.9/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SSH-01-001) for the purpose of facilitating any
future follow-up correspondence.

SSH-01-003 Client: Missing NULL check leads to crash in erroneous state (Low)
It was discovered that a crypto function does not properly check for a null pointer,
allowing for a malicious server to cause a libssh-based client application to crash. In
certain scenarios, this can lead to information leakage, for instance when core dumps
are written and made available to the attacker.

When an SSH client establishes a connection, the server sends back its public key. In
case this key cannot be parsed correctly, the libssh client cannot setup the required
crypto parameters. As such, it causes the ssh_connect() function to return an error. If the
ssh_disconnect() function is called in this erroneous state, the client crashes while
encrypting the disconnect-message. This is because the required data structs have not
been initialized. The following code snippet shows where the crash occurs. It can be
seen that out_cipher is not initialized, causing a Null Pointer Dereference upon access to
out_cipher->blocksized being attempted.

Affected File:
libssh-0.9.0/src/packet.c

Affected Code:
static int packet_send2(ssh_session session)
{
 [...]
 crypto = ssh_packet_get_current_crypto(session, SSH_DIRECTION_OUT);
 if (crypto) {
 blocksize = crypto->out_cipher->blocksize;
 lenfield_blocksize = crypto->out_cipher->lenfield_blocksize;

Although the library returns an error when the connection fails, no crash should occur
when the disconnect function is called in this state. Upon further investigation, it was
found that the issue affects applications like cURL when compiled with libssh. It is
recommended to check the out_cipher pointer against a NULL value.

Cure53, Berlin · 10/11/19 4/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SSH-01-004 SCP: Unsanitized location leads to command execution (Critical)
When the libssh SCP client connects to a server, the scp command, which includes a
user-provided path, is executed on the server-side. In case the library is used in a way
where users can influence the third parameter of ssh_scp_new(), it would become
possible for an attacker to inject arbitrary commands, leading to a compromise of the
remote target. As shown in the following snippet, the provided location is passed directly
without prior escaping.

Affected File:
libssh-0.9.0/src/scp.c

Affected Code:
int ssh_scp_init(ssh_scp scp)
{

[...]
if(scp->mode == SSH_SCP_WRITE)

snprintf(execbuffer,sizeof(execbuffer),"scp -t %s %s",
scp->recursive ? "-r":"", scp->location);

else
snprintf(execbuffer,sizeof(execbuffer),"scp -f %s %s",
scp->recursive ? "-r":"", scp->location);

if(ssh_channel_request_exec(scp->channel,execbuffer) == SSH_ERROR){

Dangerous Library Call:
ssh_scp scp = ssh_scp_new(session, SSH_SCP_READ, [USER CONTROLLED]);
ssh_scp_init(scp);

Although this issue requires an application to pass unsanitized user-input to the libssh
API, a setup where user-controlled data reaches that sink is realistic. This especially
holds because the libssh documentation1 does not mention any form of security risk
when supplying the location parameter.

Further analysis of the dangerous usage of the affected API call also demonstrated the
vulnerability of the libcurl compiled with libssh support.

Proof-of-Concept with libcurl + “--with-libssh”:
$ curl -u user scp://localhost:"/etc/passwd;touch /tmp/xxx"

1 http://api.libssh.org/stable/group__libssh__scp.html#ga9fcd39a2bb6438e39cf19ff859dc2f2e

Cure53, Berlin · 10/11/19 5/18

https://cure53.de/
http://api.libssh.org/stable/group__libssh__scp.html#ga9fcd39a2bb6438e39cf19ff859dc2f2e
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Proof-of-Concept with PHP + libcurl + “--with-libssh”:
$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, "scp://localhost/;touch /tmp/bla789");

curl_setopt($ch, CURLOPT_USERPWD, "user:pass");

curl_exec($ch);

Therefore, it is recommended to properly escape the location parameter and place it
between single quotes. This should also solve issues with paths containing certain
characters.

SSH-01-006 General: Various unchecked Null-derefs cause DOS (Low)
While applying Semmle’s extended taint tracking queries, it was possible to notice a few
null pointer dereferences resulting from unchecked function calls. The following Semmle
query indicates the potential results in full.

Used Semmle Query:
import cpp

from VariableAccess access
where maybeNull(access) and dereferenced(access)
select access, "Potential Nullderef?"

LGTM Link:
https://lgtm.com/query/8016580153808805310/

The list below enumerates a few noteworthy findings that explain the underlying
problem. Whenever one of the highlighted functions is called, its return value is left
unchecked. This results in the variable on the left side of the assignment being
uninitialized or NULL. The next dereference thus accesses the NULL pointer, causing a
segmentation fault and subsequent crash of the application reliant on the underlying
codepath.

Noteworthy Findings:
• libssh-0.9.0/src/gssapi.c:

for (i=0; i<n_oids; ++i){
 oids[i] = ssh_string_new(selected->elements[i].length + 2);
 ((unsigned char *)oids[i]->data)[0] = SSH_OID_TAG;

• libssh-0.9.0/src/messages.c:
crypto = ssh_packet_get_current_crypto(session, SSH_DIRECTION_IN);
[...]
rc = ssh_buffer_pack(buffer,

Cure53, Berlin · 10/11/19 6/18

https://cure53.de/
https://lgtm.com/query/8016580153808805310/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 "dPbsssbsS",
 crypto->digest_len,

• libssh-0.9.0/src/packet_crypt.c:
crypto = ssh_packet_get_current_crypto(session, SSH_DIRECTION_IN);
cipher = crypto->in_cipher;

It is recommended to go through the Semmle findings above and ensure that the
returned values of all function calls are correctly checked. They also need to be
accordingly bailed out of the control flow whenever the invocation fails.

SSH-01-007 PKI Gcrypt: Potential UAF/double free with RSA pubkeys (Medium)
The libssh’s memory allocation functionalities provide a macro called SAFE_FREE.
Upon freeing a pointer, this macro sets the pointer variable to NULL. However, it is still
possible to have a pointer variable be non-NULL should the macro be used in a wrapper
function. One such wrapper function is ssh_string_free whereas the caller of that
function retains a pointer of non-NULL. This can lead to double-free or Use-after-Free
(UAF) vulnerabilities.

Below is a code excerpt that shows a potential double-free vulnerability and highlights its
relevant parts.

Affected File:
libssh-0.9.0/src/pki_gcrypt.c

Affected Code:
ssh_string pki_publickey_to_blob(const ssh_key key)
{
[...]
 ssh_string e = NULL;
 ssh_string n = NULL;
[...]
 switch (key->type) {
[...]
 case SSH_KEYTYPE_RSA:
[...]

 ssh_string_burn(e);
 ssh_string_free(e);
 ssh_string_burn(n);
 ssh_string_free(n);

 break;
 case SSH_KEYTYPE_ED25519:
[...]
 }

Cure53, Berlin · 10/11/19 7/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

makestring:
 str = ssh_string_new(ssh_buffer_get_len(buffer));
 if (str == NULL) {
 goto fail;
 }

 rc = ssh_string_fill(str, ssh_buffer_get(buffer),
ssh_buffer_get_len(buffer));
 if (rc < 0) {
 goto fail;
 }
 ssh_buffer_free(buffer);

 return str;
fail:
 ssh_buffer_free(buffer);
 ssh_string_burn(str);
 ssh_string_free(str);
 ssh_string_burn(e);
 ssh_string_free(e);
[...]
 ssh_string_burn(n);
 ssh_string_free(n);

 return NULL;
}

After handling a particular case for the given switch statement, the used pointers e and n
are “freed” by the ssh_string_free in use. However, should one of the two functions
executed after the switch statement fail, then the same pointers are liberated again, thus
leading to a double-free.

It is recommended to explicitly set the pointer variables to NULL after calling
ssh_string_free, as it is done in a similar function defined in src/pki_crypto.c.

SSH-01-010 SSH: Deprecated hash function in fingerprinting (Low)
The SSH protocol standard currently defines a method for out-of-band public key
authentication through fingerprints. This is done through RFC42512, which cites FIPS-
180-2, and is represented as hexadecimal-encoded bytes of a SHA-1 hash on the public
key, as well as on the related identity information. This out-of-band mutual authentication
method is also supported as default on a large share of SSH implementations, outside of
libssh.

2 https://tools.ietf.org/html/rfc4251

Cure53, Berlin · 10/11/19 8/18

https://cure53.de/
https://tools.ietf.org/html/rfc4251
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

While no flagrant security issue exists as a result of using SHA-1 as a fingerprint hash
function, it is noted that SHA-1 is currently in the process of being deprecated across
virtually all major Internet protocols, most notably TLS (both on the protocol3 and
certificate4 levels). Furthermore, many practical attacks have been uncovered on SHA-1,
rendering collisions feasible56.

For these reasons, it is recommended to deprecate SHA-1’s usage in libssh as much as
it is possible. Unfortunately, this is constrained by notions of cross-compatibility with
other SSH implementations, and as such may not be achievable without coordinating
across other major implementations in the SSH ecosystem.

SSH-01-011 SSH: Lack of point validation on X25519 and Ed25519 (Medium)
libssh implements an extension to RFC4253 that allows for the usage of more modern
Diffie-Hellman and signature primitives, namely X25519 and Ed25519, during the key
exchange phase. However, these primitives are implemented in a way that no point/key
validation occurs during the scalar multiplication step. In the case of Curve25519, this
opens the possibility for small subgroup attacks, while posing a variety of malleability
issues in Ed25519.

Practical attacks based on these weaknesses have been demonstrated in two recent
papers by Cas Cremers et al, in particular in Section 3.4 of the first paper7, and Section
7.1 of the second one8. Considerable effort was made during the timeframe of this audit
to making a determination on whether similar issues apply to the Diffie-Hellman key
exchange described in Section 8 of RFC4253. So far, no definitive confirmation for any
flaws could be obtained. However, this might entirely be due to the need for more
research on the requirements for obtaining a colliding signature in Ed25519. Other parts
of the analysis allude to more certainty. For example, it seems likely that there may be a
reduction in forward-secrecy if a low order subgroup is forced.

If it is possible to obtain a colliding signature without modifying or Man-in-the-Middling
the server's public key (as Section 3.4 of the paper cited above strongly suggests), then
there may be a non-negligible chance that using Curve25519 and Ed25519 for some
protocol executions will result in a degradation of security for all of SSH, not just libssh.
Coupled with the potential of forcing certain cipher-suites in SSH implementations via an
active attack, this can become a serious problem if these faults are confirmed.

3 https://tools.ietf.org/id/draft-lvelvindron-tls-md5-sha1-deprecate-01.html
4 https://security.googleblog.com/2014/09/gradually-sunsetting-sha-1.html
5 https://shattered.io/static/shattered.pdf
6 https://sites.google.com/site/itstheshappening/
7 https://eprint.iacr.org/2019/779.pdf
8 https://eprint.iacr.org/2019/526.pdf

Cure53, Berlin · 10/11/19 9/18

https://cure53.de/
https://eprint.iacr.org/2019/526.pdf
https://eprint.iacr.org/2019/779.pdf
https://sites.google.com/site/itstheshappening/
https://shattered.io/static/shattered.pdf
https://security.googleblog.com/2014/09/gradually-sunsetting-sha-1.html
https://tools.ietf.org/id/draft-lvelvindron-tls-md5-sha1-deprecate-01.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Given that not enough time within the scope of the audit permits research into confirming
such a sophisticated attack, this issue is filed in order to strongly encourage point
validation in Curve25519. In doing so, the potential attack would be avoided regardless.
It is noted that performing point validation on both primitives does not break
interoperability with other SSH implementations - except for cases of extremely low
probability. This means that the approach can be deployed without creating any issues.

SSH-01-013 Conf-Parsing: Recursive wildcards in hostnames lead to DOS (Low)
While fuzzing parse_config.c and knownhosts.c it was found that the use of wildcard
characters such as “*” (asterisk) cause a recursion in the underlying parsing logic,
ultimately resulting in a Denial-of-Service. The root cause of this issue is that the
match_pattern function in match.c tries to recursively match sub-patterns against the
hostname if two wildcard characters ensue. Two PoCs for the affected file and lines of
code are shown below.

PoC 1 (known_hosts file):
**************************cure53

PoC 2 (ssh config file):
Host ******************************cure53

Affected File:
libssh-0.9.0/src/match.c

Affected Code:
static int match_pattern(const char *s, const char *pattern) {
 [..]

 for (;;) {
 [..]
 /*
 * Move ahead one character at a time and try to
 * match at each position.
 */
 for (; *s; s++) {
 if (match_pattern(s, pattern)) {
 return 1;
 }

}
[..]

Cure53, Berlin · 10/11/19 10/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to either write the code in an iterative fashion, or to make use of static
counters which track the recursion’s depth, thus bailing out if the depth is too great.
Sensible values have to be found for that counter.

SSH-01-014 Conf-Parsing: Integer underflow leads to OOB array access (Low)
While fuzzing the parsing of SSH config files, it was found that empty lines, i.e. lines with
nothing but a null byte, lead to an integer underflow. In turn, this signifies an out-of-
bounds array access. The affected file and code are shown below.

Affected File:
libssh-0.9.0/src/config.c

Affected Code:
static int ssh_config_parse_line(..,const char *line,..)
{
 size_t len;
 char *s = NULL, *x = NULL;
 x = s = strdup(line);
 [...]
 /* Remove trailing spaces */
 for (len = strlen(s) - 1; len > 0; len--) {

if (! isspace(s[len])) {
 break;

}
s[len] = '\0';

 }

In order to catch such edge cases, it is recommended to check if the supplied line has a
length greater than 0, or to refactor the loop initialization.

Cure53, Berlin · 10/11/19 11/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SSH-01-001 State Machine: Initial machine states should be set explicitly (Info)
Throughout the codebase, different variables are used for tracking different states. This
includes the overall session state, i.e. being in the authentication state or the session
being authenticated. Another example is a variable that keeps track of the state for
handshakes.

It was discovered that whenever these variables are first declared, no initial state is
explicitly set. Rather, the initial state is implicitly imposed due to the fact that allocated
memory is initialized with null bytes upon allocation.

This did not lead to any issues during the test. However, explicitly setting these variables
to their initial state aids in the overall understanding of the code and can prevent issues
where a certain state is assumed but not given. It is therefore recommended to be more
explicit about this matter by setting initial states upon declaration.

SSH-01-002 Kex: Differently bound macros used to iterate same array (Info)
When reviewing the handler functions for the different SSH messages, it was discovered
that two different macros are used as upper bounds when iterating over the same array.
For example, two for-loops iterate an array called strings, while the first does so using
the upper bound KEX_METHODS_SIZE and the SSH_KEX_METHODS second time
around. This can potentially lead to an out-of-bound read/write, since both bounds are
defined separately from one another. The code excerpt below shows the two iterations
and highlights the relevant parts.

Affected File:
libssh-0.9.0/src/kex.c

Affected Code:
SSH_PACKET_CALLBACK(ssh_packet_kexinit)
{
[...]
 char *strings[KEX_METHODS_SIZE] = {0};
[...]
 for (i = 0; i < KEX_METHODS_SIZE; i++) {
[...]

Cure53, Berlin · 10/11/19 12/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 strings[i] = ssh_string_to_char(str);
 if (strings[i] == NULL) {
 ssh_set_error_oom(session);
 goto error;
 }
 ssh_string_free(str);
 str = NULL;
 }

 /* copy the server kex info into an array of strings */
 if (server_kex) {
 for (i = 0; i < SSH_KEX_METHODS; i++) {
 session->next_crypto->client_kex.methods[i] = strings[i];
 }
[...]

During this test both upper bounds were defined to be the same size, thus not causing
any issues. However, should one of these defines change with future changes to the
code, an out-of-bound issue could emerge.

It is therefore recommended to either use the same upper boundary for both loop
iterations, or to make these two definitions interdependent. For example, let
KEX_METHODS_SIZE always be the same as SSH_KEX_METHODS.

SSH-01-005 Code-Quality: Integer sign confusion during assignments (Low)
During more general source code analysis, it was noticed that variable declarations and
assignments often change signs. This often leads to unexpected control flow, especially
when the conversion happens implicitly. To spot all potential issues where a signed
integer gets converted to an unsigned one (and the other way around), the following
Semmle query was used.

Semmle Query:
import cpp

class Signed extends IntType { Signed() { this.isSigned() }}
class Unsigned extends IntType { Unsigned() { this.isUnsigned() }}

from AssignExpr e, Signed s, Unsigned u
where (

(e.getLValue().getUnspecifiedType() = s and
e.getRValue().getUnspecifiedType() = u) or
(e.getLValue().getUnspecifiedType() = u and
e.getRValue().getUnspecifiedType() = s) and not

 (e.getLValue().isConstant() or e.getRValue().isConstant())
)

Cure53, Berlin · 10/11/19 13/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

select e.getRValue(), "Accidental signed/unsigned int conversion? " +
e.getLValue() + " = " + e.getRValue()

LGTM Results:
https://lgtm.com/query/6155169963772014869/

Noteworthy Findings:
• libssh-0.9.0/src/sftp.c (count is signed, sftp->ext->count is unsigned):

int count = sftp->ext->count;

• ibssh-0.9.0/src/sftpserver.c (val is unsigned, i i signed):
val = i;

• ibssh-0.9.0/src/sftp.c (ssh_buffer_get_len returns unsigned, packetlen is signed):
packetlen=ssh_buffer_get_len(buffer);

Although none of the findings mentioned above and in the LGTM link result in security
vulnerabilities, they are still the result of a bad coding practice that can lead to bugs in
the future. It is recommended to go through each of the Semmle findings above and
make sure implicit casts do not happen. This can be accomplished by declaring the left-
hand side variable with the type it is supposed to hold.

SSH-01-008 SCP: Protocol Injection via unescaped File Names (Low)
It was discovered that file names are not properly encoded when used in the SCP
protocol messages. If unsanitized user-input is passed to the related library functions, an
attacker can inject arbitrary SCP protocol messages and create arbitrary files in the
current SCP destination. The following code snippets show how file-names are included
in the SCP protocol. Besides extracting the path's basename, no other sanitization is
carried out.

Affected Code:
int ssh_scp_push_directory(ssh_scp scp, const char *dirname, int mode){
[...]
 dir=ssh_basename(dirname);
 perms=ssh_scp_string_mode(mode);
 snprintf(buffer, sizeof(buffer), "D%s 0 %s\n", perms, dir);

[...]
int ssh_scp_push_file64(ssh_scp scp, const char *filename, uint64_t size, int
mode){
[...]
 file=ssh_basename(filename);
 perms=ssh_scp_string_mode(mode);
 SSH_LOG(SSH_LOG_PROTOCOL,"SCP pushing file %s, size %" PRIu64 " with
permissions '%s'",file,size,perms);
 snprintf(buffer, sizeof(buffer), "C%s %" PRIu64 " %s\n", perms, size, file);

Cure53, Berlin · 10/11/19 14/18

https://cure53.de/
https://lgtm.com/query/6155169963772014869/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to follow the same approach as OpenSSH and to encode paths using
the vis-encoding9.

SSH-01-009 SSH: RFC4255 not Implemented (Info)
It was discovered that RFC425510, which describes implementing SSH fingerprint
verification through DNS record checks, is not supported in libssh despite it appearing
on the libssh list of the supported Internet standards11.

It is recommended to either implement the standard or to mark it as not currently
supported by libssh, as the suggested functionality does not occur at any point of the
user-flow.

SSH-01-012 PKI: Information leak via uninitialized stack buffer (Low)
It was discovered that during the decryption of private keys a stack buffer is not
initialized, thus leading to the potential leakage of information. In order to read the
password into the buffer, the auth_fn() callback function is called and basically equals a
user-defined callback function. In the example applications, this callback just passes the
buffer to ssh_getpass().

Affected File:
libssh-0.9.0/src/pki_container_openssh.c

Affected Code:
static int pki_private_key_decrypt([...])
{
 [...]
 char passphrase_buffer[128];
 [...]
 if (passphrase == NULL) {
 [...]
 rc = auth_fn("Passphrase",
 passphrase_buffer,
 sizeof(passphrase_buffer),
 0,
 0,
 auth_data);
 [...]
 passphrase = passphrase_buffer;
 }

9 https://linux.die.net/man/3/vis
10 https://tools.ietf.org/html/rfc4255
11 http://api.libssh.org/stable/

Cure53, Berlin · 10/11/19 15/18

https://cure53.de/
http://api.libssh.org/stable/
https://tools.ietf.org/html/rfc4255
https://linux.die.net/man/3/vis
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The ssh_getpass() function disables the display of stdin and calls ssh_gets() where the
provided buffer is printed in case its first byte is not zero. Since the buffer is not
initialized by pki_private_key_decrypt(), it might happen that stack contents are leaked.

Affected File:
libssh-0.9.0/src/getpass.c

Affected Code:
static int ssh_gets(const char *prompt, char *buf, size_t len, int verify) {
 [...]

 /* read the password */
 while (!ok) {
 if (buf[0] != '\0') {
 fprintf(stdout, "%s[%s] ", prompt, buf);
 } else {
 fprintf(stdout, "%s", prompt);
 }

It is not safe to rely on the user to properly initialize the buffer in the provided callback
function. Therefore, it is recommended to prevent the potential leakage of stack bytes by
initializing the passphrase buffers in pki_private_key_decrypt() and
pki_private_key_encrypt() with zeroes.

Cure53, Berlin · 10/11/19 16/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, this assessment of the libssh software concludes with
positive results. After spending thirty-two days on the scope in September and October
of 2019, six senior members of the Cure53 team can confirm that the libssh software is
mostly secure and generally free from major risks. At the same time, the testing
demonstrated vulnerabilities across all scope items and Work Packages, signaling that
some improvements and more granular approaches can be considered and deployed by
the maintainers of the libssh software.

It should be noted that the generous funding from the Mozilla MOSS project made this
assignment possible. Further, thanks to the libssh team’s excellent preparation and
availability throughout the test, Cure53 was able to efficiently work on the codebase,
providing and receiving thorough feedback.

Despite the large functionality and a rather large attack surface, Cure53 found the
codebase of libssh to be surprisingly clean, easy to understand and audit. Only one
exception should be made in this realm, namely as regards the libssh’s confusing state
machine that already exposed the project to vulnerabilities in the past. During this
assessment, Cure53 also spent considerable effort on auditing all of the control flow
possibilities spread throughout the entire source code. Even though the general feeling
shared by the Cure53 team is that the state machine is now securely implemented, it is
still highly recommended to devise and offer a cleaned-up and centralized rewrite.

At first glance, it appears that the number of fourteen findings is quite excessive.
However, the findings must be read in context and, notably, an aggregation of risk still
results in a rather low criticality score. A vast majority of problems must be evaluated as
minor, low-impact mistakes. Nevertheless, some noteworthy findings concern SSH-01-
004, which is a command injection via scp, as well as SSH-01-007, which demonstrates
a potentially exploitable double free in key parsing. While these discoveries would be a
hard target for the attackers to hit, especially SSH-01-004 is worth-fixing since major
applications out there insecurely implement the scenario responsible for this flaw.

Beyond the above, Cure53 also spotted a number of DOS issues that are mostly a result
of some unclean code patterns. It has been established, for example, that libssh is
riddled with unchecked function calls and integer sign confusions. Cure53 highly
recommends going through all Semmle queries and fixing these errors one-by-one
before they result in actually exploitable conditions in the future.

Regarding the libssh’s cryptographic implementations, Cure53 actually had no serious
concerns upon review. Almost all specifications (with the exception of RFC4255,

Cure53, Berlin · 10/11/19 17/18

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

documented in SSH-01-009) are standards-compliant. Cryptographic primitives used by
libssh were sound and resistant to side-channel attacks. However, one minor protocol-
level issue was identified (see SSH-01-010) and relates to the usage of deprecated hash
functions. It should be noted that this issue is not specific to libssh and likely cannot be
avoided without breaking compatibility with other SSH clients. Therefore, coordinating
across all SSH libraries in order to mitigate this issue is hereby encouraged. Finally, in
SSH-01-011, Cure53 describes a proposal for implementing point validation on
Curve25519-based cryptographic primitives. This is driven by the goal of avoiding a
number of issues that might be valid and serious but could not be confirmed in full due to
time constraints imposed on this audit, as well as their degree of intricacy.

All in all, the Cure53 team has gained a positive impression about the libssh software.
Praise needs to be extended to the development team and applies to the entire process
of this audit, starting with the preparatory phase and including communications and
follow-up work. Clearly, some bugs and security concerns can be spotted in the
codebase of libssh, yet Cure53 is generally confident about the tested software’s
reliability and its well-written codebase. It is vital that the documented issues can be
resolved rather easily, particularly as no major logic errors compromising the entire
library could be unveiled. Conclusively, the libssh software has been evaluated as
secure during this Cure53 September-October 2019 assessment.

Cure53 would like to thank Jochai Ben-Avie of Mozilla for his excellent project
coordination, support and assistance, both before and during this assignment. Cure53
would further like to express gratitude to Andreas Schneider of Red Hat as well as the
rest of the maintainer team who aided the assignment with valuable advice and input.

Cure53, Berlin · 10/11/19 18/18

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report libssh C Library 09.2019
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	SSH-01-003 Client: Missing NULL check leads to crash in erroneous state (Low)
	SSH-01-004 SCP: Unsanitized location leads to command execution (Critical)
	SSH-01-006 General: Various unchecked Null-derefs cause DOS (Low)
	SSH-01-007 PKI Gcrypt: Potential UAF/double free with RSA pubkeys (Medium)
	SSH-01-010 SSH: Deprecated hash function in fingerprinting (Low)
	SSH-01-011 SSH: Lack of point validation on X25519 and Ed25519 (Medium)
	SSH-01-013 Conf-Parsing: Recursive wildcards in hostnames lead to DOS (Low)
	SSH-01-014 Conf-Parsing: Integer underflow leads to OOB array access (Low)

	Miscellaneous Issues
	SSH-01-001 State Machine: Initial machine states should be set explicitly (Info)
	SSH-01-002 Kex: Differently bound macros used to iterate same array (Info)
	SSH-01-005 Code-Quality: Integer sign confusion during assignments (Low)
	SSH-01-008 SCP: Protocol Injection via unescaped File Names (Low)
	SSH-01-009 SSH: RFC4255 not Implemented (Info)
	SSH-01-012 PKI: Information leak via uninitialized stack buffer (Low)

	Conclusions

